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Geometry-dependent scattering through quantum billiards: Experiment and theory
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We present experimental studies of geometry-specific quantum scattering in microwave billiards of a given
shape. We perform full quantum-mechanical scattering calculations and find excellent agreement with experi-
mental results. We also carry out semiclassical calculations where the conductance is given as a sum over all
classical trajectories between the leads, each of the trajectories carrying a quantum-mechanical phase. We
unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and
reflectionamplitudes tandr are related to thelength distributionof the classical trajectories between the leads,
whereas the frequencies of theprobabilities T5utu2 and R5ur u2 can be understood in terms of thelength
difference distributionin the pairs of classical trajectories. We also discuss the effect of nonclassical ‘‘ghost’’
trajectories, i.e., trajectories that include classically forbidden reflection off the lead mouths.
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I. INTRODUCTION

The low-temperature conductance of nanoscaled semi
ductor quantum dots~often called quantum billiards! is
dominated by quantum-mechanical interference of elec
waves giving rise to reproducible conductance oscillatio
@1–10#. Theoretical and experimental studies of the cond
tance oscillations have been concentrated on both statis
and geometry-specific features@1–17#. Analyses of the sta-
tistical aspects of the conductance are commonly base
the random matrix theory or similar stochastic methods@12#.
In order to provide an interpretation of the geometry-spec
features in oscillations in a billiard of a given shape; diffe
ent, and sometimes conflicting, approaches have been
@1–11,14–17#. Very often the interpretation of the condu
tance is not directly based on transport calculations. Con
quently, the explanation of the characteristic peaks in
conductance spectrum has had rather speculative chara
In contrast, the semiclassical approach@13–19# represents
one of the most powerful tools to study the geometry-spec
scattering as it allows one to perform transport calculati
for structures of arbitrary geometry. At the same time,
semiclassical approach can provide an intuitive interpreta
of the conductance in terms of classical trajectories conn
ing the leads, each of them carrying the quantum-mechan
phase.

In this paper, we present experimental studies
geometry-specific quantum scattering in microwave billia
of a given shape using both an exact quantum mechanic
well as a semiclassical analysis. The physics and modelin
microwave cavities are conceptually similar to that of sem
conductor quantum dots because of the similarity betw
the Schro¨dinger and Helmholtz equations@19,20#. At the
same time, the microwave cavities provide a unique opp
tunity to control the precise shape of the billiard. This is n
possible for the semiconductor quantum dots where the
tual shape of the potential always remains unknown@21#.
Second, for the microwave billiards one can routinely acc
the phase information~i.e., measuring the complex transmi
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sion and reflectionamplitudes tand r ) whereas for the case
of quantum dots one typically measures the transmiss
probabilities T5utu2 only. Third, the effect of inelastic scat
tering is of much lesser importance for the microwave ca
ties than for quantum dots where the phase breaking
cesses can reduce the phase coherence length signific
Note that a billiard system of the same shape as that stu
here~realized as a semiconductor quantum dot! was investi-
gated in Refs.@5,16#. It has been demonstrated@16# that
strong inelastic scattering has lead to the suppression of
jor characteristic peaks in the transmission spectrum as
as to the strong reduction of the amplitude of the oscillatio

Our semiclassical~SC! analysis of the experimental spe
trum of the microwave billiard unambiguously demonstra
that the characteristic frequencies of the oscillations in
transmission and reflectionamplitudes tand r are related to
the length distributionof the classical trajectories betwee
the leads, whereas the frequencies of theprobabilities T
5utu2 andR5ur u2 can be understood in terms of thelength
difference distributionin all pairs of classical trajectories. T
the best of our knowledge, this provides the firstunambigu-
ous identification of the specific frequencies experimenta
observed in a billiard of a given shape.

II. BASIC THEORY

The dynamics of an electron in a two-dimensional qua
tum dot is governed by the Schro¨dinger equation

S \2

2m
¹21EDc~x,y!50, ~1!

where the wave function vanishes on the boundaryc50, E
is the electron Fermi energy and the potential inside the
liard is assumed to be zero. This equation has the same
as the Helmholtz equation governing the dynamics of
lowest TM mode in microwave billiards@19#.
©2002 The American Physical Society17-1
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In the absence of a magnetic field, the transmission
plitude tnm is given by the projection of the retarded Gre
function G5(H2E)21 onto the transverse wave function
fn(y) in the incoming and outgoing leads@22#,

tmn~k!52 i\Avnvm

3E dy1E dy2fn* ~y1!fm~y2!G~y1 ,y2 ,k!,

~2!

wherevn is the longitudinal velocity for the moden andk is
the wave vector. The total transmission coefficientT
5(mnTmn is a sum over all transmission probabilities
modesm propagating in one lead to modesn propagating in
the other;Tmn is the square modulus of the transmissi
amplitude,Tmn5utmnu2.

The quantum-mechanical computations have been
formed using a recursive Green’s function technique ba
on the Dyson equation@23#. In semiclassical computations
the quantum-mechanical Green function is replaced
its semiclassical approximation@18,19#. The semiclassica
transmission amplitude can be represented by the f
@14–17#

tmn
SC~k!5(

s
Amn

s eikl s, ~3!

wheres denotes a classical trajectory of lengthl s between
the two leads;Amn

s is an amplitude factor that depends on t
density of trajectories, mode number, entrance and
angles, etc. The details of the semiclassical calculations
given in Ref.@17#.

The conductance oscillations are most conveniently a
lyzed in terms of the length spectrum given by the Four
transform~FT!

f̃ ~ l !5E dk f~k!e2 ikl . ~4!

Due to the rapidly varying phase factor in the exponent
Eq. ~3!, the length spectrum of the SC transmission am
tude t̃ mn

SC(l ) is obviously peaked at the lengthsl 5 l s of the
trajectories between the leads. This behavior of the len
spectrum is well understood and has been numerically v
fied for a number of different model billiards with lead
@14–16#.

Using Eq.~3!, the transmission probability can be writte
in the form

Tmn
SC5utmn

SCu25(
s

uAmn
s u21(

s,s8
Amn

s Amn
s8 * eik( l s2 l s8). ~5!

The first ~slowly varying! term represents, in the limit of a
large mode numbers in the leads, the classical transmis
probability. The second~oscillating! term describes quantum
corrections to the classical transmission due to interfere
between pathss ands8. The length spectrum of the transmi
sion probability T̃mn

SC(l ) is obviously peaked at the lengt
02621
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differencel 5 l s2 l s8 in all pairs of trajectories between th
leads. Thus, identification of the characteristic frequencie
the probabilities reduces to the analysis of the path differe
distribution in a billiard with a given lead geometry@14,17#.

III. EXPERIMENT

Figure 1 shows a sketch of the microwave resonator u
in the experiments. The microwaves enter the reson
through a waveguide at a fixed position on one side, a
leave the resonator on the opposite side through ano
waveguide, which could be attached at four different po
tions indicated in the figure. Commercially availab
waveguides were used, with coupling antennas at the
and closed by a microwave absorber. The experimental
proach uses the fact that in quasi-two-dimensional resona
there is a one-to-one correspondence with quantum mec
ics as long as the frequency is smaller thannmax5c/2d,
where d is the resonator height@19#. In particular, the
quantum-mechanical transmission amplitudet introduced
above, corresponds directly to the transmission amplitude
an electromagnetic wave to pass from the entrance to the
waveguide. In the present experiment the height wasd
57.8 mm, i.e., the billiard was quasi-two-dimensional f
n,19 GHz. More experimental details can be found in R
@24#. Transmission spectra, including modulus and pha
were taken in the frequency range 10 GHz,n,18 GHz for
the four available positions of the outgoing waveguide.
the whole frequency range there is only one propaga
mode in the waveguide. As an example, Fig. 2 shows the
and imaginary parts of a typical transmission amplitudet(n)
obtained in this way, as well as the transmission probabi
T(n)5ut(n)u2.

IV. RESULTS AND DISCUSSION

Figure 3 shows the experimental and calculated data
the Fourier transformed transmission and reflectionampli-

tudes, t̃ 11(l ) andr̃ 11(l ). The agreement between the expe
mental results and the exact quantum-mechanical~QM! cal-
culations is very good. The SC transport calculations all
us to identify the characteristic peaks in the length spectr
in terms of classical trajectories connecting the billiard lea
Indeed, each peak in the SC spectrum represents a cont
tion from a particular classical trajectory, as illustrated in t
insets. However, because of the approximate nature of

FIG. 1. Sketch of the resonator used in the experiment~in scale!.
Measurements have been taken for four different positions of
outgoing wave guide as indicated in the figure.
7-2
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semiclassical approximation, the heights of the SC and
peaks do not agree fully with each other.

Furthermore, the experimental data as well as the Q
calculations show the presence of peaks that are absent i
SC calculations~for example, the peaks atl'5.5,8.8,10.5 in
the reflection amplitude!. These are so-called ‘‘ghost’’ trajec
tories, i.e., trajectories that include a classically forbidd
reflection off the lead mouths@14#. For example, the peak in
the reflection amplitude atl'8.8 is caused by the trajector
with the lengthl 54.4 which, after one revolution in the bil
liard, is reflected back at the exit by the lead mouth, so t
it makes one more revolution; and its total length is thenL
'4.43258.8. Such nonclassical trajectories are not
cluded in the standard semiclassical approximation.

The ghost trajectories are more important for reflect
than for transmission. This is due to the fact that each gh
trajectory, manifesting itself in the reflection, bounces off t
lead mouth only once, whereas each ghost trajectory, con

FIG. 2. Real and imaginary parts of a typical transmission a
plitude t(n) ~dotted and dashed lines, respectively!. The solid line
shows the transmission probabilityT(n)5utu2. The total interval of
frequency variation is 10 GHz,n,18 GHz. The frequency reso
lution is 200 kHz.

FIG. 3. Fourier transform of the experimental and calcula
quantum-mechanical~QM! transmission and reflectionamplitudes,

t̃ 11(l ) and r̃ 11(l ), for the square billiard with opposite leads. Th
lower curve shows corresponding semiclassical~SC! results, plotted
with a negative sign for the sake of clarity. The characteristic pe
are identified in terms of classical transmitted and reflected tra
tories. Peaks in the reflection amplitude atl'5.5L, 8.8L are due to
‘‘ghost’’ trajectories that include a classically forbidden reflecti
off the lead mouths. The range of the frequency variation co
sponds to one propagating mode in the leads. The insets show
schematic geometry of the experimental microwave billiard.
02621
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uting to the transmission, has to bounce off the lead mo
twice. As a result, the amplitude of such a trajectory with tw
nonclassical bounces is obviously lower than that with o
one bounce.

The Fourier transforms of the experimental and calcula
QM transmission and reflectionprobabilities, T̃11(l ) and
T̃11(l ), are shown in Fig. 4. The correspondence betwe
the theoretical and experimental probabilities is also rat
good. Note that because of the current conservation requ
ment,R1T51, the variation of the transmission is oppos
to that of reflection,dT52dR. As a result, the FTs of the
calculatedQM transmission and reflection probabilities a
practically identical. This is, however, not the case for t
experimentaltransmission and reflection probabilities, b
cause of the presence of some absorption in the system
we neither include absorption nor inelastic scattering in
theoretical calculations, this is the reason for some discr
ancy existing between the QM calculations and the exp
ment.

In contrast to the case of SC and QMamplitudes, the
agreement between the SC and QMprobabilities is only
marginal ~therefore we do not show the SC results her!.
Because the probabilities are the squared moduli of the
plitudes,T5utu2, the discrepancy that exists between the
and QM amplitudes, see Fig. 3, becomes much more pr
nounced for theprobabilities ~a detailed analysis of the dis
crepancy between the SC and QM approaches is give
Ref. @17#!. Furthermore, the interval of the frequency vari
tion ~limited to one propagating mode in the leads! is not
wide enough to ensure reliable statistics for theprobabilities.
The calculations demonstrate that with a wider frequen
interval the characteristic peaks in the FT spectrum of
probabilitiesT̃(l ) andR̃(l ) become better resolved and th
agreement between the QM and SC results improves sig
cantly. Experimentally, however, it is not possible to acce
the frequency range beyond one propagating mode in
leads.

In order to provide an SC interpretation of the probab
ties in the available frequency interval~limited to one propa-
gating mode!, we average over four different lead geom
etries, see Fig. 5. Such averaging is justified because
characteristic frequencies of the oscillations in a square
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s
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-
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FIG. 4. Fourier transform of the experimental and calcula
quantum-mechanical~QM! transmission and reflectionprobabili-

ties, T̃11(l ) andR̃11(l ), for the square billiard with opposite lead
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liard have been shown to be rather insensitive to the l
positions @16#. This in turn is related to the fact that th
classical length difference distribution is also not sensitive
the lead positions. The averaged Fourier transform of
QM probabilities,̂ T̃11(l )&, shows pronounced peaks in th
FT, which are in a good agreement with the correspond
experimental ones. The correspondence between the
aged QM and SC results is also rather good. According to
SC approach, the characteristic peaks in the SC spectra
be understood in terms of the length differences in pairs

FIG. 5. Fourier transform of the experimental, quantu
mechanical~QM! and semiclassical~SC! transmissionprobabilities

^T̃11(l )& in a square billiard averaged over four different lead p
sitions. The characteristic frequencies in the transmissionprobabili-
tiescan be understood in terms of thelength difference distribution
in the pairs of classical trajectories between the leads~the lower
curve!. Vertical dashed lines serve as guides for the eye.
.
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classical trajectories connecting the leads, see Eq.~5!. This is
demonstrated in Fig. 5 where the experimental and ca
lated spectra are compared to the classical length differe
distribution between the leads. This provides us with a se
classical interpretation of the calculated QM~and therefore
observed! conductance fluctuations. We would like to stre
that this explanation of the characteristic frequencies in
conductance is based on transport calculations for theopen
dot and is thus not equivalent to the rather common poin
view when the observed frequencies in the conductance
cillations of an open dot are assigned to the contributio
from specific periodic orbits in a corresponding closed d
@1–9,11#.

V. CONCLUSIONS

We present experimental studies of the geometry-spe
quantum scattering in a microwave billiard of a given sha
We perform full quantum-mechanical~QM! scattering calcu-
lations and find an excellent agreement with the experim
tal results. We also carry out semiclassical~SC! calculations
where the conductance is given as a sum of all class
trajectories between the leads, each of them carrying
quantum-mechanical phase. Our results thus provide anun-
ambiguousidentification of the specific frequencies of th
oscillations observed in a billiard of a given shape.
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