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Geometry-dependent scattering through quantum billiards: Experiment and theory
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We present experimental studies of geometry-specific quantum scattering in microwave billiards of a given
shape. We perform full quantum-mechanical scattering calculations and find excellent agreement with experi-
mental results. We also carry out semiclassical calculations where the conductance is given as a sum over all
classical trajectories between the leads, each of the trajectories carrying a quantum-mechanical phase. We
unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and
reflectionamplitudes &andr are related to theength distributionof the classical trajectories between the leads,
whereas the frequencies of tipeobabilities T=|t|?> and R=|r|? can be understood in terms of thength
difference distributiorin the pairs of classical trajectories. We also discuss the effect of nonclassical “ghost”
trajectories, i.e., trajectories that include classically forbidden reflection off the lead mouths.
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[. INTRODUCTION sion and reflectiormamplitudes tandr) whereas for the case
of quantum dots one typically measures the transmission
The low-temperature conductance of nanoscaled semicoprobabilities T= [t|? only. Third, the effect of inelastic scat-
ductor quantum dotgoften called quantum billiardsis  tering is of much lesser importance for the microwave cavi-
dominated by quantum-mechanical interference of electrofies than for quantum dots where the phase breaking pro-
waves giving rise to reproducible conductance oscillation§€sses can reduce the phase coherence length significantly.
[1-10]. Theoretical and experimental studies of the conducNote that a billiard system of the same shape as that studied
tance oscillations have been concentrated on both statisticBere(realized as a semiconductor quantum)aeas investi-
and geometry-specific featurfs—17]. Analyses of the sta- gated in Refs[5,16]. It has been demonstratdd6] that
tistical aspects of the conductance are commonly based d#rong inelastic scattering has lead to the suppression of ma-
the random matrix theory or similar stochastic methi®. ~ jor characteristic peaks in the transmission spectrum as well
In order to provide an interpretation of the geometry_specifi(’as to the strong reduction of the amplitude of the oscillations.
features in oscillations in a billiard of a given shape; differ- Our semiclassicalSC) analysis of the experimental spec-
ent, and sometimes conflicting, approaches have been usé$m of the microwave billiard unambiguously demonstrates
[1-11,14—17. Very often the interpretation of the conduc- that the characteristic frequencies of the oscillations in the
tance is not directly based on transport calculations. Consdtansmission and reflecticamplitudes tandr are related to
quently, the explanation of the characteristic peaks in thdhe length distributionof the classical trajectories between
conductance spectrum has had rather speculative charactéte leads, whereas the frequencies of fhebabilities T
In contrast, the semiclassical approdd8—19 represents =|t|> andR=|r| can be understood in terms of thength
one of the most powerful tools to study the geometry-specifi¢lifference distributionin all pairs of classical trajectories. To
scattering as it allows one to perform transport calculationghe best of our knowledge, this provides the firsambigu-
for structures of arbitrary geometry. At the same time, theousidentification of the specific frequencies experimentally
semiclassical approach can provide an intuitive interpretatio@bserved in a billiard of a given shape.
of the conductance in terms of classical trajectories connect-
ing the leads, each of them carrying the quantum-mechanical
phase.
In this paper, we present experimental studies Of The gynamics of an electron in a two-dimensional quan-

geometry-specific quantum scattering in microwave billiards;m dot is governed by the Scltinger equation
of a given shape using both an exact quantum mechanical as

well as a semiclassical analysis. The physics and modeling of

microwave cavities are conceptually similar to that of semi- ( h?
inilari —V2+E

conductor quantum dots because of the similarity between om

the Schrdinger and Helmholtz equatiord9,20. At the

same time, the microwave cavities provide a unique oppor-

tunity to control the precise shape of the billiard. This is notwhere the wave function vanishes on the boundasy0, E

possible for the semiconductor quantum dots where the ads the electron Fermi energy and the potential inside the bil-

tual shape of the potential always remains unknd&). liard is assumed to be zero. This equation has the same form

Second, for the microwave billiards one can routinely accesas the Helmholtz equation governing the dynamics of the

the phase informatiofi.e., measuring the complex transmis- lowest TM mode in microwave billiardglL9].

Il. BASIC THEORY

$(x,y)=0, @
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In the absence of a magnetic field, the transmission am- —
plitude t,, is given by the projection of the retarded Green —
function G=(H—E) ! onto the transverse wave functions
¢,(y) in the incoming and outgoing leadig2], L=237mm
tn(K)=—ivuom
" (==
><f dylf dy2¢n (Y1) dml(Y2)G(Y1,Y2,K), — I
(2 FIG. 1. Sketch of the resonator used in the experiniargcalg.

Measurements have been taken for four different positions of the

wherev , is the longitudinal velocity for the modeandk is outgoing wave guide as indicated in the figure.

the wave vector. The total transmission coefficieht
=2 nnTmn IS @ sum over all transmission probabilities of

L Lo difference/ =1~ in all pairs of trajectories between the
modesm propagating in one lead to modagropagating in

the other T is th re modul f the transmissi nIeads. Thus, identification of the characteristic frequencies in
€ OIET, 'mn 1S TNE SQuare modulus ot the fransmission, e probabilities reduces to the analysis of the path difference

amplitude, T ny=|tmnl*. distribution in a billiard with a given lead 4,1
The quantum-mechanical computations have been per-IS ribution in a billiard with a given lead geometry4,17.

formed using a recursive Green'’s function technique based
on the Dyson equatiof23]. In semiclassical computations,
the quantum-mechanical Green function is replaced by Figure 1 shows a sketch of the microwave resonator used
its semiclassical approximatiofi8,19. The semiclassical in the experiments. The microwaves enter the resonator
transmission amplitude can be represented by the forrhrough a waveguide at a fixed position on one side, and
[14-17 leave the resonator on the opposite side through another
waveguide, which could be attached at four different posi-
t5%Kk) =, AS, s, (3y tions indicated in the figure. Commercially available
s waveguides were used, with coupling antennas at the end
) ) and closed by a microwave absorber. The experimental ap-
wheres denotes a classical trajectory of lendthbetween  proach uses the fact that in quasi-two-dimensional resonators
the two leadsAy;, , is an amplitude factor that depends on thethere is a one-to-one correspondence with quantum mechan-
density of trajectories, mode number, entrance and exXics as long as the frequency is smaller thap.,,=c/2d,
angles, etc. The details of the semiclassical calculations afghere d is the resonator heighf19]. In particular, the
given in Ref.[17]. quantum-mechanical transmission amplitutiéntroduced
The conductance oscillations are most conveniently anaabove, corresponds directly to the transmission amplitude for
lyzed in terms of the length spectrum given by the Fourieran electromagnetic wave to pass from the entrance to the exit
transform(FT) waveguide. In the present experiment the height was
=7.8 mm, i.e., the billiard was quasi-two-dimensional for
“f‘(/):f dkf(k)e . (4)  v<19 GHz. More experimental details can be found in Ref.
[24]. Transmission spectra, including modulus and phase,
ere taken in the frequency range 10 GHz<18 GHz for
he four available positions of the outgoing waveguide. In

IIl. EXPERIMENT

Due to the rapidly varying phase factor in the exponent o

Eq. (3), the length spectrum of the SC transmission ampll—,[he whole frequency range there is only one propagating

t“deﬁﬁ(/) is obviously peaked at the lengthis=15 of the  ode in the waveguide. As an example, Fig. 2 shows the real
trajectories between the leads. This behavior of the lengthyq imaginary parts of a typical transmission amplittice

spectrum is well understood and has been numerically verigptained in this way, as well as the transmission probability
fied for a number of different model billiards with leads () =|t(»)|2.

[14-16.
Using Eq.(3), the transmission probability can be written IV. RESULTS AND DISCUSSION
in the form '
Figure 3 shows the experimental and calculated data for
T§%2|t§%2:2 |Aﬁqn|2+2 AS A?r:n* elkls=ls) (5 the Fgurier tranfformed transmission and reflectonpli-
s s, tudes tq11(/) andr4(/). The agreement between the experi-
_ ) ] o mental results and the exact quantum-mechari@M) cal-
The first (slowly varying term represents, in the limit of a cyjations is very good. The SC transport calculations allow
large mode numbers in the leads, the classical transmissiqgs to identify the characteristic peaks in the length spectrum
probability. The seconébscillating term describes quantum i, terms of classical trajectories connecting the billiard leads.
corrections to the classical transmission due to interferencgdeed, each peak in the SC spectrum represents a contribu-
between paths ands’. The length spectrum of the transmis- tion from a particular classical trajectory, as illustrated in the
sion probabilitnyn‘,i(/') is obviously peaked at the length insets. However, because of the approximate nature of the
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FIG. 2. Real and imaginary parts of a typical transmission am-
plitude t(») (dotted and dashed lines, respectiyeljhe solid line
shows the transmission probabilify ) =|t|?. The total interval of
frequency variation is 10 GHzv<18 GHz. The frequency reso-
lution is 200 kHz.

FIG. 4. Fourier transform of the experimental and calculated
guantum-mechanicalQM) transmission and reflectioprobabili-

ties T14(#) andRy4(~), for the square billiard with opposite leads.

uting to the transmission, has to bounce off the lead mouth

semiclassical approximation, the heights of the SC and QMwice. As a result, the amplitude of such a trajectory with two

peaks do not agree fully with each other. nonclassical bounces is obviously lower than that with only
Furthermore, the experimental data as well as the QMbne bounce.

calculations show the presence of peaks that are absent in the The Fourier transforms of the experimental and calculated

SC calculationsfor example, the peaks &+5.5,8.8,10.5in QM transmission and reflectioprobabilities T1y(~) and

the_ refl_ecuon a_mplltL_J@eTheS(_a are so-called _ghost trajec- T11(/), are shown in Fig. 4. The correspondence between
to;:es',[_ |.e.,ﬁtrtzaje(itorcljes th?tﬁlrzlclu':de a clas|3|catllrlly forbl'(d.denthe theoretical and experimental probabilities is also rather
refiection off the lead mou I ]'. or exampie, the peax in good. Note that because of the current conservation require-
the reflection amplitude d&8.8 is caused by the trajectory ment,R+T=1, the variation of the transmission is opposite

v_vith the lengthl = 4.4 which, afte.r one revolution in the bil- o that of reflection 5T= — SR. As a result, the FTs of the
!|ard, is reflected back at the ?X't by. the lead mouth, SO thaialculatedQM transmission and reflection probabilities are

it makes one more revolution; .and |ts.total _Iength IS tlhen practically identical. This is, however, not the case for the
%4'4X2.:8'8' Such nonclgssmql trajectories are not In'experimentaltransmission and reflection probabilities, be-
cluded in the standard_ semchaSS|caI.approx|mat|on. . cause of the presence of some absorption in the system. As

The ghost tr'aje.ctorles' are more important for rEHECUOH\Ne neither include absorption nor inelastic scattering in the
thqn for transmission. Th|s 1S due to the_fact that each ghozﬂleoretical calculations, this is the reason for some discrep-
trajectory, manifesting itself in the reflection, bounces off theancy existing between the QM calculations and the experi-
lead mouth only once, whereas each ghost trajectory, contrih- ent.

In contrast to the case of SC and QaMplitudes the
agreement between the SC and Qivbbabilities is only
marginal (therefore we do not show the SC results here
Because the probabilities are the squared moduli of the am-
plitudes, T=|t|?, the discrepancy that exists between the SC
and QM amplitudes see Fig. 3, becomes much more pro-
nounced for theprobabilities (a detailed analysis of the dis-
crepancy between the SC and QM approaches is given in
Ref.[17]). Furthermore, the interval of the frequency varia-

F i tion (limited to one propagating mode in the leads not
I R R S Sy S B R T R R wide enough to ensure reliable statistics for ginebabilities

u The calculations demonstrate that with a wider frequency
FIG. 3. Fourier transform of the experimental and calculatedlmervaI the characteristic peaks in the FT spectrum of the

quantum-mechanicdQM) transmission and reflecticamplitudes ~ ProbabilitiesT(/) andR(/) become better resolved and the
T,4(7) and¥y4(/), for the square billiard with opposite leads. The 2dreement between the QM and SC results improves signifi-
lower curve shows corresponding semiclassiga results, plotted  c2Ntly- Experimentally, however, it is not possible to access
with a negative sign for the sake of clarity. The characteristic peakiN€ frequency range beyond one propagating mode in the
are identified in terms of classical transmitted and reflected trajecleads.

tories. Peaks in the reflection amplitudd at5.5., 8.8 are due to In order to provide an SC interpretation of the probabili-
“ghost” trajectories that include a classically forbidden reflection ti€s in the available frequency intervdimited to one propa-

off the lead mouths. The range of the frequency variation corregating modg we average over four different lead geom-
sponds to one propagating mode in the leads. The insets show tigdries, see Fig. 5. Such averaging is justified because the
schematic geometry of the experimental microwave billiard. characteristic frequencies of the oscillations in a square bil-

Free
Experime

nt

=10 -

Transmission
—
==

—_
<

F.T. Amplitudes [arb. units]

Reflection
=)

M

of et
IZ _:
Y

026217-3



BLOMQUIST, SCHANZE, ZOZOULENKO, AND STOCKMANN PHYSICAL REVIEW E66, 026217 (2002

]
\
"
)

classical trajectories connecting the leads, se¢®qThis is
demonstrated in Fig. 5 where the experimental and calcu-
lated spectra are compared to the classical length difference
distribution between the leads. This provides us with a semi-
classical interpretation of the calculated Q&hd therefore
observed conductance fluctuations. We would like to stress
that this explanation of the characteristic frequencies in the
conductance is based on transport calculations forofien

dot and is thus not equivalent to the rather common point of
view when the observed frequencies in the conductance os-
IIIIIIIIII length difference distribution cillations of an open dot are assigned to the contributions
Op ™5y from specific periodic orbits in a corresponding closed dot

IL [1-9,11.

FIG. 5. Fourier transform of the experimental, quantum-
mechanicalQM) and semiclassicd5C) transmissiorprobabilities
ﬁll(/)) in a square billiard averaged over four different lead po-
sitions. The characteristic frequencies in the transmigsiobabili-
tiescan be understood in terms of tlength difference distribution
in the pairs of classical trajectories between the le@dds lower
curve. Vertical dashed lines serve as guides for the eye.
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V. CONCLUSIONS

We present experimental studies of the geometry-specific
quantum scattering in a microwave billiard of a given shape.
We perform full quantum-mechanicé@@M) scattering calcu-
lations and find an excellent agreement with the experimen-
tal results. We also carry out semiclassi¢aC) calculations
where the conductance is given as a sum of all classical

liard have been shown to be rather insensitive to the leaff@jectories between the leads, each of them carrying the
positions[16]. This in turn is related to the fact that the quantum-mechanical phase. Our results thus providenan
classical length difference distribution is also not sensitive tmbiguousidentification of the specific frequencies of the
the lead positions. The averaged Fourier transform of th@scillations observed in a billiard of a given shape.

QM probabilities,(T;1(#)), shows pronounced peaks in the

FT, which are in a good agreement with the corresponding
experimental ones. The correspondence between the aver- Financial support from the National Graduate School in
aged QM and SC results is also rather good. According to th&cientific Computing (T.B.) and the Swedish Research
SC approach, the characteristic peaks in the SC spectra c&ouncil (1.V.Z.) is acknowledged. The experiments were
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